Q.P.	Code:	19EE0242
------	-------	-----------------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations December-2021 NETWORK THEORY

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 60

6M

6M

R19

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

a Explain about Nodal analysis and write the steps for applying nodal analysis.
 b Determine the mesh currents for the following
 L4
 6M

network.

2

- OR
- a State and prove Tellegen's theorem.
 b Determine the equivalent current source between the terminals A and B.
 L4

UNIT-II

3	a	A series RLC circuit has $R=10\Omega$, L=0.1H and C=50µF. The applied voltage		6M
		100V. Find Resonant frequency & Quality factor of a coil.		
	b	Explain about Series resonance with phasor diagrams.	L2	6M
		OR		
4	a	Explain about Quality factor and Band-width of Scries resonance.	L2	6M
	b	Design constant-K band pass filter having a design impedance of 500Ω and	L4	6M
		cut-off frequencies		

f = 1 kHz and f = 10 kHz.

*** END ***